A model for non-parametric spatially varying regression effects
نویسنده
چکیده
A method for non-parametric regression effects is applied to spatially configured data, using a generalised additive form that allows regression effects to vary over areas. The focus is on discrete outcomes in disease mapping but can be adapted to metric outcomes. Specifically a mixed model is proposed that combines a local general additive model (GAM) element for each area with a spatially filtered GAM effect. Modifications are discussed that allow for the impact of outliers on the spatial regression. The paper uses a Bayesian approach that places randomwalk priors on the various smooth functions, Gamma priors on inverse scale parameters and Dirichlet priors on mixing parameters. The model is illustrated with applications to lip cancer mortality in Scottish counties, where there is one predictor with regression impact modelled non-parametrically, and suicide deaths in 32 London boroughs, where two predictors are taken to follow a spatial GAM form. © 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملRegression Modeling for Spherical Data via Non-parametric and Least Square Methods
Introduction Statistical analysis of the data on the Earth's surface was a favorite subject among many researchers. Such data can be related to animal's migration from a region to another position. Then, statistical modeling of their paths helps biological researchers to predict their movements and estimate the areas that are most likely to constitute the presence of the animals. From a geome...
متن کاملSpatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients
In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...
متن کاملAnalytical Solutions for Spatially Variable Transport-Dispersion of Non-Conservative Pollutants
Analytical solutions have been obtained for both conservative and non-conservative forms of one-dimensional transport and transport-dispersion equations applicable for pollution as a result of a non-conservative pollutant-disposal in an open channel with linear spatially varying transport velocity and nonlinear spatially varying dispersion coefficient on account of a steady unpolluted lateral i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 50 شماره
صفحات -
تاریخ انتشار 2006